Fe-based composited cores for single-phase transformers fabricated with high-induction amorphous material
Chang-Hung Hsu, Shan-Jen Cheng, Chun-Yao Lee, Chao-Ming Fu, and Chia-Wen Chang

Citation: Journal of Applied Physics 115, 17A342 (2014); doi: 10.1063/1.4867752
View online: http://dx.doi.org/10.1063/1.4867752
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/115/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited)
J. Appl. Phys. 109, 07A302 (2011); 10.1063/1.3535169

CoFe-based amorphous alloy with high relaxation frequency

Compositional dependence of the soft magnetic properties of the nanocrystalline Fe–Zr–Nb–B alloys with high magnetic flux density
J. Appl. Phys. 87, 7100 (2000); 10.1063/1.372943

Effect of Ti, V, Cr, and Mn additions on the magnetic properties of a nanocrystalline soft magnetic Fe–Zr–B alloy with high magnetic flux density
J. Appl. Phys. 85, 5127 (1999); 10.1063/1.369099

Ferromagnetic Co–Fe–Zr–B amorphous alloys with glass transition and good high-frequency permeability
Appl. Phys. Lett. 73, 744 (1998); 10.1063/1.121987
Fe-based composited cores for single-phase transformers fabricated with high-induction amorphous material

Chang-Hung Hsu,1,2 Shan-Jen Cheng,3 Chun-Yao Lee,4,a) Chao-Ming Fu,5 and Chia-Wen Chang6

1Division of Electrical Engineering, Fortune Electric Company Ltd., Tao-Yuan 320, Taiwan
2Department of Computer and Communication Engineering, Army Academy R.O.C., Tao-Yuan 320, Taiwan
3Department of Aircraft Engineering, Army Academy R.O.C., Tao-Yuan 320, Taiwan
4Department of Electrical Engineering, Chung Yuan Christian University, Tao-Yuan 320, Taiwan
5Department of Physics, National Taiwan University, Tai-Pei 10617, Taiwan
6Department of Information and Telecommunications Engineering, Ming Chuan University, Tai-Pei 33348, Taiwan

(Received 24 September 2013; accepted 5 December 2013; published online 4 April 2014)

A composite-structured, high-induction, double-layered soft magnetic composite core (SMC) comprised of magnetic amorphous HB1-M, HB1, and SA1 materials was developed. A finite element analysis simulated results for the magnetic loss and magnetic flux density for three types of amorphous cores are quite different from findings for traditional magnetic core structures, such as laminated silicon steel, because the magnetostriction and permeability properties of composite-laminated no-cutting structures can be restrained. The SMC structure showed interesting results for magnetic loss, magnetic flux lines, core vibration, and sound level. The main advantage of transformers assembled with composited-cores of SA1 and HB1 over a higher-induction core single-phase transformer is the significant reduction of magnetic loss. However, the SA1 and HB1 composite core also showed worse results in terms of vibration and sound level because the magnetostriction and magnetic flux density in the core distribution are not quite identical to the results for other core types. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867752]

Several recent studies on transformers have focused on improving core joints, and these studies have reported experimental results on longitudinal flux density and its harmonics at the limb, yoke, and corner.1 As demonstrated in previous research,2 designing transformers using composite magnetic cores constructed with a combination of different soft magnetic materials can effectively reduce costs and core losses. Core losses in different specimens of soft magnetic composite material have been measured using circular and elliptical rotating magnetic fields at different frequencies.

Soft materials with amorphous, composite-type cores denoted as SA1 (A), HB1 (B), and HB1-M (C), with core thicknesses of 0.1 and 20 mm, were designed as outer and inner cores. The properties of these three types of ferromagnetic composite cores are summarized in Table I. The ferromagnetic core materials and dimensions of the main structural characteristics are reported in Fig. 1. Figure 2 has shown the experimental environment of amorphous core.

Rotation of moments to align with the applied field can be modeled by the quadratic relation

$$\lambda = \frac{3}{2} \lambda_s \frac{M}{M_s}^2,$$

where λ_s and M_s respectively, denote the saturation magnetostriction and magnetization. As reference discussed,3 the pre-stress levels needed to optimize transducer performance are often of a magnitude such that stress anisotropy dominates crystalline anisotropy, and thus the relation in Eq. (1) adequately models the strain generated by the material. Furthermore, for the magnetic properties of the amorphous material,4 the initial permeability μ_i is directly related to the average anisotropy constant values (K) by

$$\mu_i = \frac{p_p J_r^2}{\mu_0 K},$$

where J_r is the average saturation polarization of the material, various values of p_p are dimensionless pre-factors of the order of unity, and μ_0 is the vacuum permeability. Accordingly, coercivity and permeability are expected to vary with grain size as $H_c \propto D^6$ and $\mu \propto 1/D^6$. In general, the coercivity H_c and the initial permeability μ_i of various soft magnetic alloys are a function of the grain size D. Additionally, for measurement of rotational core loss P_c, the field-metric method was employed.

According to Poynting’s theorem, the total core loss P_c in the specimen can be calculated by

$$P_c = \frac{1}{T p_m} \int_0^T H dB dt,$$

<table>
<thead>
<tr>
<th>Alloy</th>
<th>HB1-M</th>
<th>HB1</th>
<th>SA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>7.33</td>
<td>7.39</td>
<td>7.18</td>
</tr>
<tr>
<td>Saturation induction (Tesla)</td>
<td>1.63</td>
<td>1.63</td>
<td>1.56</td>
</tr>
<tr>
<td>Coercivity (A/m)</td>
<td>0.9</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Electric resistivity (10⁶ Ωm)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Magnetostriction (ppm)</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

a)Author to whom correspondence should be addressed. Electronic mail: Dr. Chun-Yao Lee: cyl@cycu.edu.tw. Fax: +886-3-4621110.
where T is the time period of magnetization and ρ_m is the mass density of the specimen.

To measure the transformer core vibration and sound level, these values can be summarized as $\frac{\text{core}}{\text{es}}$, where es is the coefficient of the soft magnetic material in saturation magnetostriction (m/m).

Then, well-accepted methods for establishing the core’s sound level involve inducing core sound level (dB) by correlating this level with H_c, B_m, ε. The resulting sound level caused by the magnetostriction vibration in the fundamental frequency of $2f$, which can be attributed to the acceleration (m/s^2) and the core vibration can be expressed as $N_c \propto \varepsilon_s$.

As indicated by Eqs. (1) and (2), the core’s magnetostriction and permeability will be affected by the material’s magnetic anisotropy and its saturation induction. Therefore, finite element analysis (FEA) software was used to show the core’s cross-sectional area and its magnetic flux density variation, as shown in Fig. 3. The hysteresis loop result for the composite core with the SA1 (outer) and HB1 (inner) structures has lower core loss because of the higher saturation induction and lower coercivity of the inner HB1 core, as shown in Fig. 4. Equation (3) can be used to calculate the core loss for different magnetic cores, and this structure shows lower core loss and exciting power for SA1 and HB1 because the composited core was assembled with HB1 material; for this material, the magnetic flux lines are concentrated in the inner core of HB1, as shown in Fig. 5. Table II summarizes the FEA and measurement results for a single-phase transformer with a composite core assembled from HB1-M, HB1, and SA1 materials. Referring to Sec. III, both the sound level and core vibration are dependent on the core’s magnetostriction vibration at the fundamental frequency of $2f$, with this core vibration expressed as $N_c \propto \varepsilon_s$, as shown in Fig. 6.
According to the aforementioned experimental results, the soft magnetic cores showed excellent magnetic properties compared with new HB1-M materials comprised of other soft magnetic materials, such as SA1 and HB1, which show worse results and lead to higher total manufacturing costs.

TABLE II. Comparison of FEA and measured results for different composite-cored structures, type A: SA1, B: HB1, and C: HB1-M.

<table>
<thead>
<tr>
<th>Category</th>
<th>Composite-cored structure (Outer + Inner)</th>
<th>Magnetic induction (Tesla)</th>
<th>Measured core loss (Watt/g)</th>
<th>FEA core loss (Watt/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>A + B</td>
<td>...</td>
<td>0.899</td>
<td>0.98</td>
</tr>
<tr>
<td>...</td>
<td>A + C</td>
<td>...</td>
<td>1.44</td>
<td>1.35</td>
</tr>
<tr>
<td>500 Hz</td>
<td>B + A</td>
<td>...</td>
<td>0.92</td>
<td>1.01</td>
</tr>
<tr>
<td>...</td>
<td>B + C</td>
<td>1.09</td>
<td>1.272</td>
<td>1.51</td>
</tr>
<tr>
<td>...</td>
<td>C + A</td>
<td>...</td>
<td>1.312</td>
<td>1.45</td>
</tr>
<tr>
<td>...</td>
<td>C + B</td>
<td>...</td>
<td>1.179</td>
<td>1.58</td>
</tr>
<tr>
<td>...</td>
<td>A + B</td>
<td>...</td>
<td>0.229</td>
<td>0.232</td>
</tr>
<tr>
<td>...</td>
<td>A + C</td>
<td>...</td>
<td>0.252</td>
<td>0.457</td>
</tr>
<tr>
<td>...</td>
<td>B + A</td>
<td>...</td>
<td>0.237</td>
<td>0.254</td>
</tr>
<tr>
<td>3000 Hz</td>
<td>B + C</td>
<td>0.5</td>
<td>0.449</td>
<td>0.433</td>
</tr>
<tr>
<td>...</td>
<td>C + A</td>
<td>...</td>
<td>0.248</td>
<td>0.457</td>
</tr>
<tr>
<td>...</td>
<td>C + B</td>
<td>...</td>
<td>0.567</td>
<td>0.473</td>
</tr>
</tbody>
</table>

This paper proposed a method for realizing high-frequency amorphous composited-core transformers exhibiting excellent magnetic properties and reduced manufacturing and operating costs. The contribution of the composited core is integral for improving the economic performance of single-phase transformers because this core enables operation at frequencies of 0.5–3 kHz. This method has validated the integration of a double-layer core (comprised of SA1 and HB1) into a transformer, which resulted in lower magnetic loss and higher permeability. However, magnetostriction and permeability showed worse results for vibration and sound level.
